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Abstract

Multispectral sensor systems have become steadily improved over the years in their
ability to deliver increased spectral detail. With the advent of hyperspectral sensors,
including imaging spectrometers, this technology is in the process of taking a large
leap forward, thus providing the possibility of enabling delivery of much more detailed
information. However, this direction of development has drawn even more attention to
the matter of noise and other deleterious effects in the data, because reducing the

fundamental limitations of spectral detail on information collection raises the limitations

presented by noise to even greater importance.

Much current effort in remote sensing research is thus being devoted to adjusting the

data to mitigate the effects of noise and other deleterious effects. A parallel approach
to the problem is to look for analysis approaches and procedures which have reduced
sensitivity to such effects.

In this presentation we shall discuss some of the fundamental principles which define
analysis algorithm characteristics providing such reduced sensitivity. One such
analysis procedure including an example analysis of a data set will be described

illustrating this effect.
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Noise occurs in multispectral data from many sources, a significant one being
that due to the effects of the atmosphere. The problem of adjusting the data to minimize
the effect of the atmosphere has proven to be a daunting one. This leads one to consider if
one can construct analysis procedures which have a reduced sensitivity to such noise. In
this presentation an approach is given to the analysis of hyperspectral data which is based
upon some fundamental principles of signal processing and data analysis. The focus is
placed upon hyperspectral data because it presents some new opportunities to deal more
effectively with such noise sources as atmospheric effects. The presentation begins
pointing to the difference between hyperspectral data and more conventional
multispectral data, then outlines some basic characteristics of the analysis process. It
concludes with an example analysis of an AVIRIS data set illustrating some of these

principles.

Although TM would appear to be a logical extension of MSS, hyperspectral data
such as that of AVIRIS is a very large step beyond TM. Not only has the spectral detail
increased (4 bands to 6 bands to 210 bands), but the signal-to-noise ratio has as well (6 bit
to 8 bit to 10 bit data). It is thus reasonable to suggest that large paralleling advances in

data analysis methods are needed if the full value of hyperspectral data is to be realized.
Because of the complexity of the new data, such data analysis research should proceed in

a very rigorous and fundamentally based fashion.

For example, a key question to be addressed for the new environment of large
numbers of spectral bands is that of finding or constructing optimal sets of features to be
used in a given analysis problem. Methods useful in the past tended to be dependent upon
there being small numbers of bands. Thus, in addition to algorithm complexity and

computation time being less important, useful features tended to involve a large
percentage (e.g., 3 out of seven) of the total number available. In the new environment,
useful features may involve either broad regions or be confined to very narrow spectral

regions, or some of both. Tools such as the principal components transformation would
tend to suppress important features which are narrow. Optimal selection of individual
feature subsets would not be feasible due to the large amount of computation required.

Engineering research over the years has resulted in much fundamental
knowledge about the process of analysis of complex data. Results drawn from the fields
of the communication sciences, pattern analysis, and signal processing are particularly
relevant to noise in remote sensing problems. Basic principles which have emerged are

useful as a point of departure.

Next, we will outline some relevant ideas in the areas of,
• Means for the quantitative representation of signals, and
• Analysis algorithm characteristics.
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In order that one not unknowingly overlook any information that might be
present in such data, one must carefully select the means of data representation which

forms the basis for the analysis approach. The data representation should have the
following characteristics. It should be

• Broadly Applicable
• Mathematically Rigorous
• Must Not Ignore Any Information-Bearing Attributes

The method proposed is defined by the following pair of equations.
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These equations give a general and very powerful method. Basically the process
required is a transformation from a continuous function to a discrete, finite dimensional
multivariate space. We refer to this as a transformation from spectral space to feature

space. A simplified way of thinking of this process is one of sampling, however, the
sampling function may take many forms other than that of simple impulse sampling as
used in this illustration.
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One of the serious concerns in working in higher dimensional feature spaces is
that many of the usual properties of two or three dimensional space do not necessarily
remain valid. The following are two illustrations of this.

• Borsuk's Conjecture: If you break a stick in two, both pieces are
shorter than the original.

• Keller's Conjecture: It is possible to use cubes (hypercubes) of equal
size to fill an n-dimensional space, leaving no overlaps nor
underlaps.

Counter-examples to both have been found for higher dimensional spaces. 1Thus

one must be very careful about using one's intuition in projecting what may be true with
high dimensional data analysis.

The most straightforward way of thinking of a pixel is that a "pure pixel"
contains a single material which has a specific spectral response. Given the greater
discriminant power of higher dimensional data, this may be an over-simplified point of
departure. In reality, any pixel viewed at any resolution is (a) a mixture of a large number
of things which (b) involve a variety of observational parameter values. For example, a
vegetative canopy pixel would contain a conglomerate of reflectance from the leaf
surface, the stems, the background or understory, etc., and these would be observed

under various conditions of illumination and view, at various levels of the canopy, etc.
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Thusdifferentpixelsofthesamematerial,havingslightlydifferentmixesofthese
parameters,wouldhaveslightlydifferentspectralresponses.Thesemixesofparameter
valuesarecharacteristicofthematerial.Thismeansthatamaterialisdefinednotbya
singlespectralresponse,butbyafamilyof(characteristicallyrelated)spectralresponses.

Withregardtoanalysismethods,thereareanumber of general characteristics
which are axiomatic to obtaining optimal results. Examples are that relative
measurements can be made more accurately than absolute ones, situation-specific

methods will out-perform general ones (i.e., the jack of all trades is master of none), and
one must make full use of all relevant ancillary data. In addition we require that there be

no requirement for concomitant observations from the ground.

In the context of hyperspectral data analysis this implies that one wants to
discriminate between a set of classes rather than attempt to identify a single class
outfight. Further, rather than making the algorithm automatic, the algorithm should utilize
reference data which is situation specific.

It is useful at this point to step back from the problem and take a broad overview
of the entire remote sensing system. The sensor basically acts as a transducer, converting
the radiation from the Earth surface to electrical signals. These signals are next
transmitted to the processing center, where the data may be preprocessed in some way,

e.g., calibrated. Next follows the application of one or more analysis algorithms. A key
step in this process is the merging with additional ancillary or reference data, and with the
expertise of the analyst.

So far as the extraction of information from the data is concerned, the merging
of the new data with the reference ancillary data is a very key step. Indeed, this pretty
much defines the broad outlines of the analysis process, i.e., it is a process of merging the
new data to be analyzed with reference data or information so as to make the analysis

algorithm to be used effective.

However, to make this merging successful there is another key operation

required, the reconciliation of the circumstances of the collection of the new data with
that of the reference data. This "reconciliation of conditions" step may be carded out in

any of three possible ways:
1. The new data may be adjusted to the conditions present in the reference data.

This is referred to as the "Stored Signature Approach."
2. Both the new data and the reference data may be adjusted to a third set of

conditions. This is the case when both data sets are "Calibrated" to an

absolute set of geophysical units, for example.
3. The reference data may be adjusted or referenced to those conditions existing

when the new data was collected.

The t'trst two necessarily require a very substantial amount of processing, since

they are applied to all of the new data as a minimum. Further, if the level of precision is
to be maintained, the precision of the data used in these adjustments must be very high,
and as sensor technology continues to advance, so must the level of this precision. A

simple but powerful way of accomplishing this reconciliation is to use the third
possibility by manually identifying examples of each material in the current data. This
observation focuses one's attention upon the reference data, and just what is meant by
that term.

By the term, Reference Data, is meant all the relevant data and information
which can be merged with the data stream in a favorable way during the analysis

process, whether it be quantitative or subjective, e.g., whether it be calibration data or the
expertise of the analyst. It was previously argued that one must make maximum use of all
information-bearing attributes of the data, and further we argue that the analysis
performance is in direct proportion to the effective use of the reference data. Care must be
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exercisedthatboththequantitativeandthesubjectivereferencedataareusedinsucha
wayastonotbiastheresultsinappropriately.

Anexampleanalysisof anAVIRISdatasetwill illustratehowsomeofthese
principlescomeintoplay.Forthisexample,adatasetwaschosenpurposelyasonewith
ahighnoiselevel,andnocorrectionfortheatmospherewasused.Fourmineralswereof
particularinterest,alunite,buddingtonite,kaolinite,andquartz.Theresultoftheanalysis
isshowninthefollowingfigure.Thisresultcomparesfavorablywithmoreconventional
publishedresultsobtainedfromhigherqualitydata.
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The quantitative reference data used in this case were known spectroscopic
absorption features for each of the four minerals, represented as reflectance (as compared
to a radiance) vs. wavelength. Conventional techniques might have one attempt to
calibrate all of the data set to absolute units of reflectance so that each pixel could be
compared to the four curves to see if it was adequately similar. This approach, though
quite functional in many circumstances, requires a quite high signal-to-noise ratio in
order to avoid errors, and it is quite dependent upon having accurate calibration
information. Further it utilizes only the (obvious) information about the above classes
which is apparent from the above known spectral features. It ignores less obvious
information which may be available elsewhere in the spectra.

The classification of the data set was done with ECHO, a spectral spatial
maximum likelihood algorithm. The processing steps used in obtaining the result have
some fundamental differences from conventional ones. Instead of using the four reference
spectra directly, they were only used to locate and label training samples in the data set

itself. In this way, not only was it possible to avoid all the processing involved in
correcting or calibrating all of the data, but the procedure automatically normalizes out
many of the observational variations not related directly to the classes of interest. This
process also allows in an objective and effective way for the analyst to use his/her
knowledge about the positional relationship between different materials and how they
might be expected to occur in the scene. The feature selection algorithm used, an
algorithm that calculates optimal features in terms of a linear combination of the bands in

the range, allows for making use of any characteristic in the wavelength range which will
assist in discriminating between the materials, and not simply the four absorption features
above.
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The above result is an improved one in which several of the limitations
arbitrarily imposed in the previous case have been lifted, allowing it to be more typical of
what would normally be expected. It was obtained with basically the same procedure, but
with the following improvements.

I. A data set which has a higher signal-to-noise ratio was used.
2. Though no diagnostic spectral features beyond the spectral region 2.02-2.35 Ixm

are apparent by manual examination, are there characteristics elsewhere in the
0.4-2.4 p.m region which might be useful? A feature extraction technique
referred to as discriminate analysis was used to construct a linear combination of

the 210 spectral bands which would be optimal for discriminating between the
desired classes. The optimal eight dimensional subspace of this new space was
then used to classify the data.

3. Significantly greater separation of classes was observed at this point and an
additional class was added to the list.

4. The class separations were great enough that it was not necessary to use the
ECHO spectral/spatial classifier, although doing so results in a substantially
faster classification. The ECHO result is essentially identical to that of standard
maximum likelihood, but takes only 60% as much computer time.

All of the processing was done with MultiSpec, a software system implemented
on the Apple Macintosh, and working in conjunction with Matlab, thus demonstrating

the fact that though the data are complex, a low-cost analysis system could be used quite
effectively, and no programming skills in a compiler language are required.

In summary, rather than focusing upon calibrating the data or correcting for
atmospheric effects, we have devised a set of algorithms and procedures for their use

which significantly reduces the need for such data correction. In doing so, we do not
suggest that atmospheric corrections should not be made, for indeed their use when
accomplished with adequate precision should provide even further potential for
information extraction. However, we do suggest that such correction procedures should
be done being fully aware that they may be helpful, hurtful, or have little or no effect at
all.
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